Skip to main content

Interactions of Cannabis and Amphetamine-Type Stimulants

  • Chapter
  • First Online:
Cannabinoid Modulation of Emotion, Memory, and Motivation

Abstract

Amphetamine-type stimulants (ATSs) are a large family of substances of abuse, characterized by well-known mood- and performance-enhancing properties. This class encompasses several high-potency stimulants and entactogens, such as the precursor compound d-amphetamine (AMPH), its synthetic N-methylated derivatives methamphetamine (METH) and 3, 4-methylenedioxy-N-methylamphetamine (MDMA, or “ecstasy”), as well as novel designer drugs, based on substituted forms of the natural alkaloid cathinone. ATSs (and in particular METH) are among the most commonly abused substances worldwide, second only to Cannabis sativa; indeed, the rate of concurrent consumption of METH and cannabis has been increasing over the last decade, particularly among adolescents. Anecdotal evidence suggests that marijuana may offset some unpleasant subjective effects of ATSs, such as anxiety and paranoia. Both drugs have been shown to increase schizophrenia vulnerability in young vulnerable individuals, raising the possibility that their concurrent intake may have synergistic effects with respect to the development of psychotic manifestations. In addition, the combination of these two substances may affect their subjective effects and exacerbate their abuse liability. Although current evidence on the neurobiological interactions of cannabis and ATSs remains mostly elusive, initial studies in animal models suggest that the cannabinoid system may play a relevant role in the motivational and addictive properties of ATSs; furthermore, cannabinoids may modify the behavioral effects and even attenuate some untoward long-term consequences of ATSs. In this chapter we review the available evidence on these potential interactions and outline some key mechanisms that may account for the mutual modulatory influence of these substances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Nowadays, the therapeutic applications of ATSs are mostly limited to low-potency compounds, which carry a very limited liability for dependence. Notably, low doses of the dextrorotatory enantiomers of AMPH and METH are still approved by the Food and Drug Administration for the treatment of narcolepsy and attention-deficit hyperactivity disorder (ADHD).

References

  1. Edeleano L. Ueber einige Derivate der Phenylmethacrylsäure und der Phenylisobuttersäure. Ber Dtsch Chem Ges. 1887;20:616–22.

    Article  Google Scholar 

  2. Weisheit L, White RW. Methamphetamine: its history, pharmacology and treatment. Center City: Hazelden; 2009.

    Google Scholar 

  3. Abuse NIoD. NIDA Research Report Series: methamphetamine abuse and addiction. In: Rockville MD, editors. Dept. of Health and Human Services NIoH, National Institute on Drug Abuse. Research Report Series; 2002.

    Google Scholar 

  4. Anglin MD, Burke C, Perrochet B, Stamper E, Dawud-Noursi S. History of the methamphetamine problem. J Psychoactive Drugs. 2000;32(2):137–41.

    Article  CAS  PubMed  Google Scholar 

  5. D. S. Western Canadian Summit on methamphetamine: bringing together practitioners, policy makers and researchers: consensus panel report. Vancouver: Vancouver Coastal Health; 2005. p. 1–48.

    Google Scholar 

  6. Russell K, Dryden DM, Liang Y, Friesen C, OʼGorman K, Durec T, et al. Risk factors for methamphetamine use in youth: a systematic review. BMC Pediatr. 2008;8:48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Iritani BJ, Hallfors DD, Bauer DJ. Crystal methamphetamine use among young adults in the USA. Addiction. 2007;102(7):1102–13.

    Article  PubMed  Google Scholar 

  8. Maxwell JC, Rutkowski BA. The prevalence of methamphetamine and amphetamine abuse in North America: a review of the indicators, 1992–2007. Drug Alcohol Rev. 2008;27(3):229–35.

    Article  PubMed  Google Scholar 

  9. McKetin R, Kozel N, Douglas J, Ali R, Vicknasingam B, Lund J, et al. The rise of methamphetamine in Southeast and East Asia. Drug Alcohol Rev. 2008;27(3):220–8.

    Article  PubMed  Google Scholar 

  10. United Nations, Publications. United Nations Office on Drugs and Crime: World Drug Report 2010. 2010.

    Google Scholar 

  11. Hollister L. Interactions of cannabis with other drugs in man. In: Ginzburg MCBHM, editor. Strategies for research on the interactions of drugs of abuse. Rockville: National Institute on Drug Abuse;1986.

    Google Scholar 

  12. Kalechstein AD, Newton TF, Longshore D, Anglin MD, van Gorp WG, Gawin FH. Psychiatric comorbidity of methamphetamine dependence in a forensic sample. J Neuropsychiatry Clin Neurosci. 2000;12(4):480–4.

    Article  CAS  PubMed  Google Scholar 

  13. Simon SL, Domier CP, Sim T, Richardson K, Rawson RA, Ling W. Cognitive performance of current methamphetamine and cocaine abusers. J Addict Dis. 2002;21(1):61–74.

    Article  PubMed  Google Scholar 

  14. Cottencin O, Rolland B, Karila L. New designer drugs (synthetic cannabinoids and synthetic cathinones): review of literature. Curr Pharm Des. 2014;20(25):4106–11.

    Google Scholar 

  15. Fisar Z. Phytocannabinoids and endocannabinoids. Curr Drug Abuse Rev. 2009;2(1):51–75.

    Article  CAS  PubMed  Google Scholar 

  16. Uchiyama N, Kawamura M, Kikura-Hanajiri R, Goda Y. URB-754: a new class of designer drug and 12 synthetic cannabinoids detected in illegal products. Forensic Sci Int. 2013;227(1–3):21–32.

    Article  CAS  PubMed  Google Scholar 

  17. Berry MD. Mammalian central nervous system trace amines. Pharmacologic amphetamines, physiologic neuromodulators. J Neurochem. 2004;90(2):257–71.

    Article  CAS  PubMed  Google Scholar 

  18. Bortolato M, Chen K, Shih JC. Monoamine oxidase inactivation: from pathophysiology to therapeutics. Adv Drug Deliv Rev. 2008;60(13–14):1527–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Paterson IA, Juorio AV, Boulton AA. 2-Phenylethylamine: a modulator of catecholamine transmission in the mammalian central nervous system? J Neurochem. 1990;55(6):1827–37.

    Article  CAS  PubMed  Google Scholar 

  20. Ishida K, Murata M, Katagiri N, Ishikawa M, Abe K, Kato M, et al. Effects of beta-phenylethylamine on dopaminergic neurons of the ventral tegmental area in the rat: a combined electrophysiological and microdialysis study. J Pharmacol Exp Ther. 2005;314(2):916–22.

    Article  CAS  PubMed  Google Scholar 

  21. Kuroki T, Tsutsumi T, Hirano M, Matsumoto T, Tatebayashi Y, Nishiyama K, et al. Behavioral sensitization to beta-phenylethylamine (PEA): enduring modifications of specific dopaminergic neuron systems in the rat. Psychopharmacology. 1990;102(1):5–10.

    Article  CAS  PubMed  Google Scholar 

  22. Sotnikova TD, Budygin EA, Jones SR, Dykstra LA, Caron MG, Gainetdinov RR. Dopamine transporter-dependent and -independent actions of trace amine beta-phenylethylamine. J Neurochem. 2004;91(2):362–73.

    Article  CAS  PubMed  Google Scholar 

  23. Ledonne A, Federici M, Giustizieri M, Pessia M, Imbrici P, Millan MJ, et al. Trace amines depress D(2)-autoreceptor-mediated responses on midbrain dopaminergic cells. Br J Pharmacol. 2010;160(6):1509–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Borowsky B, Adham N, Jones KA, Raddatz R, Artymyshyn R, Ogozalek KL, et al. Trace amines: identification of a family of mammalian G protein-coupled receptors. Proc Nat Acad Sci U S A. 2001;98(16):8966–71.

    Article  CAS  Google Scholar 

  25. Miller GM, Verrico CD, Jassen A, Konar M, Yang H, Panas H, et al. Primate trace amine receptor 1 modulation by the dopamine transporter. J Pharmacol Exp Ther. 2005;313(3):983–94.

    Article  CAS  PubMed  Google Scholar 

  26. Xie Z, Westmoreland SV, Miller GM. Modulation of monoamine transporters by common biogenic amines via trace amine-associated receptor 1 and monoamine autoreceptors in human embryonic kidney 293 cells and brain synaptosomes. J Pharmacol Exp Ther. 2008;325(2):629–40.

    Article  CAS  PubMed  Google Scholar 

  27. Xie Z, Miller GM. Trace amine-associated receptor 1 is a modulator of the dopamine transporter. J Pharmacol Exp Ther. 2007;321(1):128–36.

    Article  CAS  PubMed  Google Scholar 

  28. Rothman RB, Baumann MH. Monoamine transporters and psychostimulant drugs. Eur J Pharmacol. 2003;479(1–3):23–40.

    Article  CAS  PubMed  Google Scholar 

  29. Han DD, Gu HH. Comparison of the monoamine transporters from human and mouse in their sensitivities to psychostimulant drugs. BMC Pharmacol. 2006;6:6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Eshleman AJ, Henningsen RA, Neve KA, Janowsky A. Release of dopamine via the human transporter. Mol Pharmacol. 1994;45(2):312–6.

    CAS  PubMed  Google Scholar 

  31. Sitte HH, Huck S, Reither H, Boehm S, Singer EA, Pifl C. Carrier-mediated release, transport rates, and charge transfer induced by amphetamine, tyramine, and dopamine in mammalian cells transfected with the human dopamine transporter. J Neurochem. 1998;71(3):1289–97.

    Article  CAS  PubMed  Google Scholar 

  32. Jones SR, Gainetdinov RR, Wightman RM, Caron MG. Mechanisms of amphetamine action revealed in mice lacking the dopamine transporter. J Neurosci. 1998;18(6):1979–86.

    CAS  PubMed  Google Scholar 

  33. Bunzow JR, Sonders MS, Arttamangkul S, Harrison LM, Zhang G, Quigley DI, et al. Amphetamine, 3,4-methylenedioxymethamphetamine, lysergic acid diethylamide, and metabolites of the catecholamine neurotransmitters are agonists of a rat trace amine receptor. Mol Pharmacol. 2001;60(6):1181–8.

    CAS  PubMed  Google Scholar 

  34. Fleckenstein AE, Metzger RR, Gibb JW, Hanson GR. A rapid and reversible change in dopamine transporters induced by methamphetamine. Eur J Pharmacol. 1997;323(2–3):R9–10.

    Article  CAS  PubMed  Google Scholar 

  35. Xie Z, Westmoreland SV, Bahn ME, Chen GL, Yang H, Vallender EJ, et al. Rhesus monkey trace amine-associated receptor 1 signaling: enhancement by monoamine transporters and attenuation by the D2 autoreceptor in vitro. J Pharmacol Exp Ther. 2007;321(1):116–27.

    Article  CAS  PubMed  Google Scholar 

  36. Shin EJ, Duong CX, Nguyen XK, Li Z, Bing G, Bach JH, et al. Role of oxidative stress in methamphetamine-induced dopaminergic toxicity mediated by protein kinase Cdelta. Behav Brain Res. 2012;232(1):98–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sandoval V, Riddle EL, Ugarte YV, Hanson GR, Fleckenstein AE. Methamphetamine-induced rapid and reversible changes in dopamine transporter function: an in vitro model. J Neurosci. 2001;21(4):1413–9.

    CAS  PubMed  Google Scholar 

  38. Lindemann L, Meyer CA, Jeanneau K, Bradaia A, Ozmen L, Bluethmann H, et al. Trace amine-associated receptor 1 modulates dopaminergic activity. J Pharmacol Exp Ther. 2008;324(3):948–56.

    Article  CAS  PubMed  Google Scholar 

  39. Erickson JD, Schafer MK, Bonner TI, Eiden LE, Weihe E. Distinct pharmacological properties and distribution in neurons and endocrine cells of two isoforms of the human vesicular monoamine transporter. Proc Natl Acad Sci U S A. 1996;93(10):5166–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nickell JR, Krishnamurthy S, Norrholm S, Deaciuc G, Siripurapu KB, Zheng G, et al. Lobelane inhibits methamphetamine-evoked dopamine release via inhibition of the vesicular monoamine transporter-2. J Pharmacol Exp Ther. 2010;332(2):612–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Horton DB, Siripurapu KB, Norrholm SD, Culver JP, Hojahmat M, Beckmann JS, et al. meso-Transdiene analogs inhibit vesicular monoamine transporter-2 function and methamphetamine-evoked dopamine release. J Pharmacol Exp Ther. 2011;336(3):940–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Alvers KM, Beckmann JS, Zheng G, Crooks PA, Dwoskin LP, Bardo MT. The effect of VMAT2 inhibitor GZ-793 A on the reinstatement of methamphetamine-seeking in rats. Psychopharmacology. 2012;224(2):255–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fumagalli F, Gainetdinov RR, Wang YM, Valenzano KJ, Miller GW, Caron MG. Increased methamphetamine neurotoxicity in heterozygous vesicular monoamine transporter 2 knock-out mice. J Neurosci. 1999;19(7):2424–31.

    CAS  PubMed  Google Scholar 

  44. Takahashi N, Miner LL, Sora I, Ujike H, Revay RS, Kostic V, et al. VMAT2 knockout mice: heterozygotes display reduced amphetamine-conditioned reward, enhanced amphetamine locomotion, and enhanced MPTP toxicity. Proc Natl Acad Sci U S A. 1997;94(18):9938–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang YM, Gainetdinov RR, Fumagalli F, Xu F, Jones SR, Bock CB, et al. Knockout of the vesicular monoamine transporter 2 gene results in neonatal death and supersensitivity to cocaine and amphetamine. Neuron. 1997;19(6):1285–96.

    Article  CAS  PubMed  Google Scholar 

  46. Miller HH, Shore PA, Clarke DE. In vivo monoamine oxidase inhibition by d-amphetamine. Biochemical Pharmacol. 1980;29(10):1347–54.

    Article  CAS  Google Scholar 

  47. Kita T, Philbert MA, Wagner GC, Huang J, Lowndes HE. Methamphetamine-induced modification of dopamine metabolism in cultured striatal astrocytes. Pharmacol Toxicol. 1998;83(1):36–9.

    Article  CAS  PubMed  Google Scholar 

  48. Descarries L, Watkins KC, Garcia S, Bosler O, Doucet G. Dual character, asynaptic and synaptic, of the dopamine innervation in adult rat neostriatum: a quantitative autoradiographic and immunocytochemical analysis. J Comp Neurol. 1996;375(2):167–86.

    Article  CAS  PubMed  Google Scholar 

  49. Descarries L, Mechawar N. Ultrastructural evidence for diffuse transmission by monoamine and acetylcholine neurons of the central nervous system. Prog Brain Res. 2000;125:27–47.

    Article  CAS  PubMed  Google Scholar 

  50. Fuxe K, Dahlstrom A, Hoistad M, Marcellino D, Jansson A, Rivera A, et al. From the Golgi-Cajal mapping to the transmitter-based characterization of the neuronal networks leading to two modes of brain communication: wiring and volume transmission. Brain Res Rev. 2007;55(1):17–54.

    Article  CAS  PubMed  Google Scholar 

  51. Zoli M, Agnati LF. Wiring and volume transmission in the central nervous system: the concept of closed and open synapses. Prog Neurobiol. 1996;49(4):363–80.

    Article  CAS  PubMed  Google Scholar 

  52. Murray RM, Lappin J, Di Forti M. Schizophrenia: from developmental deviance to dopamine dysregulation. Eur Neuropsychopharmacol. 2008;18 Suppl 3:129–34.

    Article  CAS  Google Scholar 

  53. Braff DL, Geyer MA. Sensorimotor gating and schizophrenia. Human and animal model studies. Arch Gen Psychiatry. 1990;47(2):181–8.

    Article  CAS  PubMed  Google Scholar 

  54. Swerdlow NR, Stephany N, Wasserman LC, Talledo J, Shoemaker J, Auerbach PP. Amphetamine effects on prepulse inhibition across-species: replication and parametric extension. Neuropsychopharmacology. 2003;28(4):640–50.

    Article  CAS  PubMed  Google Scholar 

  55. Chou YH, Karlsson P, Halldin C, Olsson H, Farde L. A PET study of D(1)-like dopamine receptor ligand binding during altered endogenous dopamine levels in the primate brain. Psychopharmacology. 1999;146(2):220–7.

    Article  CAS  PubMed  Google Scholar 

  56. Bergson C, Mrzljak L, Smiley JF, Pappy M, Levenson R, Goldman-Rakic PS. Regional, cellular, and subcellular variations in the distribution of D1 and D5 dopamine receptors in primate brain. J Neurosci. 1995;15(12):7821–36.

    CAS  PubMed  Google Scholar 

  57. Yung KK, Bolam JP, Smith AD, Hersch SM, Ciliax BJ, Levey AI. Immunocytochemical localization of D1 and D2 dopamine receptors in the basal ganglia of the rat: light and electron microscopy. Neuroscience. 1995;65(3):709–30.

    Article  CAS  PubMed  Google Scholar 

  58. Sesack SR, Aoki C, Pickel VM. Ultrastructural localization of D2 receptor-like immunoreactivity in midbrain dopamine neurons and their striatal targets. J Neurosci. 1994;14(1):88–106.

    CAS  PubMed  Google Scholar 

  59. Tirotta E DMC, Iitaka C, Ramos M, Holmes D, Borrelli E. U. Unraveling the role of dopamine receptors in vivo: lessons from knockout mice. In: KA N. The dopamine receptors. 2 ed. New York: Humana; 2010. p. 303–22.

    Chapter  Google Scholar 

  60. Marcellino D, Kehr J, Agnati LF, Fuxe K. Increased affinity of dopamine for D(2)-like versus D(1) -like receptors. Relevance for volume transmission in interpreting PET findings. Synapse. 2012;66(3):196–203.

    Google Scholar 

  61. Rolinski Z, Scheel-Kruger J. The effect of dopamine and noradrenaline antagonists on amphetamine induced locomotor activity in mice and rats. Acta Pharmacol Toxicol. 1973;33(5):385–99.

    CAS  Google Scholar 

  62. Paulus MP, Geyer MA. A scaling approach to find order parameters quantifying the effects of dopaminergic agents on unconditioned motor activity in rats. Prog Neuropsychopharmacol Biol Psychiatry.1991;15(6):903–19.

    Article  CAS  PubMed  Google Scholar 

  63. Lapin IP, Rogawski MA. Effects of D1 and D2 dopamine receptor antagonists and catecholamine depleting agents on the locomotor stimulation induced by dizocilpine in mice. Behav Brain Res. 1995;70(2):145–51.

    Article  CAS  PubMed  Google Scholar 

  64. OʼNeill MF, Shaw G. Comparison of dopamine receptor antagonists on hyperlocomotion induced by cocaine, amphetamine, MK-801 and the dopamine D1 agonist C-APB in mice. Psychopharmacology. 1999;145(3):237–50.

    Article  PubMed  Google Scholar 

  65. Ralph RJ, Varty GB, Kelly MA, Wang YM, Caron MG, Rubinstein M, et al. The dopamine D2, but not D3 or D4, receptor subtype is essential for the disruption of prepulse inhibition produced by amphetamine in mice. J Neurosci. 1999;19(11):4627–33.

    CAS  PubMed  Google Scholar 

  66. Kim SE, Han SM. Nicotine- and methamphetamine-induced dopamine release evaluated with in-vivo binding of radiolabelled raclopride to dopamine D2 receptors: comparison with in-vivo microdialysis data. Int J Neuropsychopharmacol. 2009;12(6):833–41.

    Article  CAS  PubMed  Google Scholar 

  67. Gonon F. Prolonged and extrasynaptic excitatory action of dopamine mediated by D1 receptors in the rat striatum in vivo. J Neurosci. 1997;17(15):5972–8.

    CAS  PubMed  Google Scholar 

  68. Centonze D, Picconi B, Baunez C, Borrelli E, Pisani A, Bernardi G, et al. Cocaine and amphetamine depress striatal GABAergic synaptic transmission through D2 dopamine receptors. Neuropsychopharmacology. 2002;26(2):164–75.

    Article  CAS  PubMed  Google Scholar 

  69. Cepeda C, Hurst RS, Altemus KL, Flores-Hernandez J, Calvert CR, Jokel ES, et al. Facilitated glutamatergic transmission in the striatum of D2 dopamine receptor-deficient mice. J Neurophysiol. 2001;85(2):659–70.

    CAS  PubMed  Google Scholar 

  70. Chesselet MF, Plotkin JL, Wu N, Levine MS. Development of striatal fast-spiking GABAergic interneurons. Prog Brain Res. 2007;160:261–72.

    Article  CAS  PubMed  Google Scholar 

  71. Bamford NS, Zhang H, Schmitz Y, Wu NP, Cepeda C, Levine MS, et al. Heterosynaptic dopamine neurotransmission selects sets of corticostriatal terminals. Neuron. 2004;42(4):653–63.

    Article  CAS  PubMed  Google Scholar 

  72. Jones S, Kauer JA. Amphetamine depresses excitatory synaptic transmission via serotonin receptors in the ventral tegmental area. J Neurosci. 1999;19(22):9780–7.

    CAS  PubMed  Google Scholar 

  73. Rothman RB, Baumann MH, Dersch CM, Romero DV, Rice KC, Carroll FI, et al. Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin. Synapse. 2001;39(1):32–41.

    Article  CAS  PubMed  Google Scholar 

  74. Ventura R, Cabib S, Alcaro A, Orsini C, Puglisi-Allegra S. Norepinephrine in the prefrontal cortex is critical for amphetamine-induced reward and mesoaccumbens dopamine release. J Neurosci. 2003;23(5):1879–85.

    CAS  PubMed  Google Scholar 

  75. Del Arco A Martinez R Mora F. Amphetamine increases extracellular concentrations of glutamate in the prefrontal cortex of the awake rat: a microdialysis study. Neurochem Res. 1998;23(9):1153–8.

    Article  CAS  PubMed  Google Scholar 

  76. Miele M, Mura MA, Enrico P, Esposito G, Serra PA, Migheli R, et al. On the mechanism of d-amphetamine-induced changes in glutamate, ascorbic acid and uric acid release in the striatum of freely moving rats. Br J Pharmacol. 2000;129(3):582–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Paladini CA, Fiorillo CD, Morikawa H, Williams JT. Amphetamine selectively blocks inhibitory glutamate transmission in dopamine neurons. Nat Neurosci. 2001;4(3):275–81.

    Article  CAS  PubMed  Google Scholar 

  78. Ernst T, Chang L, Leonido-Yee M, Speck O. Evidence for long-term neurotoxicity associated with methamphetamine abuse: a 1H MRS study. Neurology. 2000;54(6):1344–9.

    Article  CAS  PubMed  Google Scholar 

  79. Volkow ND, Chang L, Wang GJ, Fowler JS, Ding YS, Sedler M, et al. Low level of brain dopamine D2 receptors in methamphetamine abusers: association with metabolism in the orbitofrontal cortex. Am J Psychiatry. 2001;158(12):2015–21.

    Article  CAS  PubMed  Google Scholar 

  80. Cubells JF, Rayport S, Rajendran G, Sulzer D. Methamphetamine neurotoxicity involves vacuolation of endocytic organelles and dopamine-dependent intracellular oxidative stress. J Neurosci. 1994;14(4):2260–71.

    CAS  PubMed  Google Scholar 

  81. Larsen KE, Fon EA, Hastings TG, Edwards RH, Sulzer D. Methamphetamine-induced degeneration of dopaminergic neurons involves autophagy and upregulation of dopamine synthesis. J Neurosci. 2002;22(20):8951–60.

    CAS  PubMed  Google Scholar 

  82. Cadet JL, Sheng P, Ali S, Rothman R, Carlson E, Epstein C. Attenuation of methamphetamine-induced neurotoxicity in copper/zinc superoxide dismutase transgenic mice. J Neurochem. 1994;62(1):380–3.

    Article  CAS  PubMed  Google Scholar 

  83. Hirata H, Ladenheim B, Rothman RB, Epstein C, Cadet JL. Methamphetamine-induced serotonin neurotoxicity is mediated by superoxide radicals. Brain Res. 1995;677(2):345–7.

    Article  CAS  PubMed  Google Scholar 

  84. Yamamoto BK, Zhu W. The effects of methamphetamine on the production of free radicals and oxidative stress. J Pharmacol Exp Ther. 1998;287(1):107–14.

    CAS  PubMed  Google Scholar 

  85. Perfeito R, Cunha-Oliveira T, Rego AC. Reprint of: revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease-resemblance to the effect of amphetamine drugs of abuse. Free Radic Biol Med. 2013;62:186–201.

    Article  CAS  PubMed  Google Scholar 

  86. Kiyatkin EA, Sharma HS. Acute methamphetamine intoxication: brain hyperthermia, blood-brain barrier, brain edema, and morphological cell abnormalities. Int Rev Neurobiol. 2009;88:65–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bowyer JF, Davies DL, Schmued L, Broening HW, Newport GD, Slikker W, Jr., et al. Further studies of the role of hyperthermia in methamphetamine neurotoxicity. J Pharmacol Exp Ther. 1994;268(3):1571–80.

    CAS  PubMed  Google Scholar 

  88. Davidson C, Gow AJ, Lee TH, Ellinwood EH. Methamphetamine neurotoxicity: necrotic and apoptotic mechanisms and relevance to human abuse and treatment. Brain Res Brain Res Rev. 2001;36(1):1–22.

    Article  CAS  PubMed  Google Scholar 

  89. Vergo S, Johansen JL, Leist M, Lotharius J. Vesicular monoamine transporter 2 regulates the sensitivity of rat dopaminergic neurons to disturbed cytosolic dopamine levels. Brain Res. 2007;1185:18–32.

    Article  CAS  PubMed  Google Scholar 

  90. Guillot TS, Shepherd KR, Richardson JR, Wang MZ, Li Y, Emson PC, et al. Reduced vesicular storage of dopamine exacerbates methamphetamine-induced neurodegeneration and astrogliosis. J Neurochem. 2008;106(5):2205–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hadlock GC, Chu PW, Walters ET, Hanson GR, Fleckenstein AE. Methamphetamine-induced dopamine transporter complex formation and dopaminergic deficits: the role of D2 receptor activation. J Pharmacol Exp Ther. 2010;335(1):207–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Mark KA, Soghomonian JJ, Yamamoto BK. High-dose methamphetamine acutely activates the striatonigral pathway to increase striatal glutamate and mediate long-term dopamine toxicity. J Neurosci. 2004;24(50):11449–56.

    Article  CAS  PubMed  Google Scholar 

  93. Sonsalla PK, Nicklas WJ, Heikkila RE. Role for excitatory amino acids in methamphetamine-induced nigrostriatal dopaminergic toxicity. Science. 1989;243(4889):398–400.

    Article  CAS  PubMed  Google Scholar 

  94. Deng X, Cadet JL. Methamphetamine-induced apoptosis is attenuated in the striata of copper-zinc superoxide dismutase transgenic mice. Brain Res Mol Brain Res. 2000;83(1–2):121–4.

    Article  CAS  PubMed  Google Scholar 

  95. Deng X, Cai NS, McCoy MT, Chen W, Trush MA, Cadet JL. Methamphetamine induces apoptosis in an immortalized rat striatal cell line by activating the mitochondrial cell death pathway. Neuropharmacology. 2002;42(6):837–45.

    Article  CAS  PubMed  Google Scholar 

  96. Cadet JL, Krasnova IN, Jayanthi S, Lyles J. Neurotoxicity of substituted amphetamines: molecular and cellular mechanisms. Neurotox Res. 2007;11(3–4):183–202.

    Article  CAS  PubMed  Google Scholar 

  97. Hall W, Solowij N. Adverse effects of cannabis. Lancet. 1998;352(9140):1611–6.

    Article  CAS  PubMed  Google Scholar 

  98. Salo R, Nordahl TE, Natsuaki Y, Leamon MH, Galloway GP, Waters C, et al. Attentional control and brain metabolite levels in methamphetamine abusers. Biol Psychiatry. 2007;61(11):1272–80.

    Article  CAS  PubMed  Google Scholar 

  99. Degenhardt L, Hall W. Is cannabis use a contributory cause of psychosis? Can J Psychiatry. 2006;51(9):556–65.

    PubMed  Google Scholar 

  100. Callaghan RC, Cunningham JK, Allebeck P, Arenovich T, Sajeev G, Remington G, et al. Methamphetamine use and schizophrenia: a population-based cohort study in California. Am J Psychiatry. 2012;169(4):389–96.

    Article  PubMed  Google Scholar 

  101. Arseneault L, Moffit TE, Caspi A, Taylor A. The targets of violence committed by young offenders with alcohol dependence, marijuana dependence and schizophrenia-spectrum disorders: findings from a birth cohort. Crim Behav Ment Health. 2002;12(2):155–68.

    Article  PubMed  Google Scholar 

  102. Henquet C, Krabbendam L, Spauwen J, Kaplan C, Lieb R, Wittchen HU, et al. Prospective cohort study of cannabis use, predisposition for psychosis, and psychotic symptoms in young people. BMJ. 2005;330(7481):11.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Evans MA, Martz R, Rodda BE, Lemberger L, Forney RB. Effects of marihuana-dextroamphetamine combination. Clin Pharmacol Ther. 1976;20(3):350–8.

    Article  CAS  PubMed  Google Scholar 

  104. Foltin RW, Fischman MW, Pippen PA, Kelly TH. Behavioral effects of cocaine alone and in combination with ethanol or marijuana in humans. Drug Alcohol Depend. 1993;32(2):93–106.

    Article  CAS  PubMed  Google Scholar 

  105. Hayase T, Yamamoto Y, Yamamoto K. Persistent anxiogenic effects of a single or repeated doses of cocaine and methamphetamine: interactions with endogenous cannabinoid receptor ligands. Behav Pharmacol. 2005;16(5–6):395–404.

    Article  CAS  PubMed  Google Scholar 

  106. Tambaro S, Bortolato M. Cannabinoid-related agents in the treatment of anxiety disorders: current knowledge and future perspectives. Recent Pat CNS Drug Discov. 2012;7(1):25–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Fowler JS, Volkow ND, Logan J, Alexoff D, Telang F, Wang GJ, et al. Fast uptake and long-lasting binding of methamphetamine in the human brain: comparison with cocaine. Neuroimage. 2008;43(4):756–63.

    Article  PubMed  PubMed Central  Google Scholar 

  108. De Petrocellis L Cascio MG Di Marzo V. The endocannabinoid system: a general view and latest additions. Br J Pharmacol. 2004;141(5):765–74.

    Article  CAS  PubMed  Google Scholar 

  109. Mechoulam R, Parker LA. The endocannabinoid system and the brain. Annu Rev Psychol. 2013;64:21–47.

    Article  PubMed  Google Scholar 

  110. Howlett AC, Qualy JM, Khachatrian LL. Involvement of Gi in the inhibition of adenylate cyclase by cannabimimetic drugs. Mol Pharmacol. 1986;29(3):307–13.

    CAS  PubMed  Google Scholar 

  111. Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature. 1990;346(6284):561–4.

    Article  CAS  PubMed  Google Scholar 

  112. Munro S, Thomas KL, Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature. 1993;365(6441):61–5.

    Article  CAS  PubMed  Google Scholar 

  113. Freund TF, Katona I, Piomelli D. Role of endogenous cannabinoids in synaptic signaling. Physiol Rev. 2003;83(3):1017–66.

    Article  CAS  PubMed  Google Scholar 

  114. Mackie K. Distribution of cannabinoid receptors in the central and peripheral nervous system. Handb Exp Pharmacol. 2005;168:299–325.

    Article  CAS  PubMed  Google Scholar 

  115. Morishita W, Alger BE. Evidence for endogenous excitatory amino acids as mediators in DSI of GABA(A)ergic transmission in hippocampal CA1. J Neurophysiol. 1999;82(5):2556–64.

    CAS  PubMed  Google Scholar 

  116. Wilson RI, Nicoll RA. Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses. Nature. 2001;410(6828):588–92.

    Article  CAS  PubMed  Google Scholar 

  117. Ohno-Shosaku T, Maejima T, Kano M. Endogenous cannabinoids mediate retrograde signals from depolarized postsynaptic neurons to presynaptic terminals. Neuron. 2001;29(3):729–38.

    Article  CAS  PubMed  Google Scholar 

  118. Varma N, Carlson GC, Ledent C, Alger BE. Metabotropic glutamate receptors drive the endocannabinoid system in hippocampus. J Neurosci. 2001;21(24):RC188.

    CAS  PubMed  Google Scholar 

  119. Lovinger DM. Presynaptic modulation by endocannabinoids. Handb Exp Pharmacol. 2008;184:435–77.

    Article  CAS  PubMed  Google Scholar 

  120. Pertwee RG, Howlett AC, Abood ME, Alexander SP, Di Marzo V, Elphick MR, et al. International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB(1) and CB(2). Pharmacol Rev. 2010;62(4):588–631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hudson BD, Hebert TE, Kelly ME. Ligand- and heterodimer-directed signaling of the CB(1) cannabinoid receptor. Mol Pharmacol. 2010;77(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  122. Ferre S, Goldberg SR, Lluis C, Franco R. Looking for the role of cannabinoid receptor heteromers in striatal function. Neuropharmacology. 2009;56 Suppl 1:226–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Walter L, Stella N. Cannabinoids and neuroinflammation. Br J Pharmacol. 2004;141(5):775–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Van Sickle MD, Duncan M, Kingsley PJ, Mouihate A, Urbani P, Mackie K, et al. Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science. 2005;310(5746):329–32.

    Article  PubMed  CAS  Google Scholar 

  125. Gong JP, Onaivi ES, Ishiguro H, Liu QR, Tagliaferro PA, Brusco A, et al. Cannabinoid CB2 receptors: immunohistochemical localization in rat brain. Brain Res. 2006;1071(1):10–23.

    Article  CAS  PubMed  Google Scholar 

  126. Mechoulam R, Ben-Shabat S, Hanus L, Ligumsky M, Kaminski NE, Schatz AR, et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol. 1995;50(1):83–90.

    Article  CAS  PubMed  Google Scholar 

  127. Sugiura T, Kondo S, Sukagawa A, Nakane S, Shinoda A, Itoh K, et al. 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun. 1995;215(1):89–97.

    Article  CAS  PubMed  Google Scholar 

  128. Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science. 1992;258(5090):1946–9.

    Article  CAS  PubMed  Google Scholar 

  129. Okamoto Y, Morishita J, Tsuboi K, Tonai T, Ueda N. Molecular characterization of a phospholipase D generating anandamide and its congeners. J Biol Chem. 2004;279(7):5298–305.

    Article  CAS  PubMed  Google Scholar 

  130. Sun YX, Tsuboi K, Okamoto Y, Tonai T, Murakami M, Kudo I, et al. Biosynthesis of anandamide and N-palmitoylethanolamine by sequential actions of phospholipase A2 and lysophospholipase D. Biochem J. 2004;380(Pt 3):749–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Di Marzo V, Fontana A, Cadas H, Schinelli S, Cimino G, Schwartz JC, et al. Formation and inactivation of endogenous cannabinoid anandamide in central neurons. Nature. 1994;372(6507):686–91.

    Article  PubMed  Google Scholar 

  132. Beltramo M, Stella N, Calignano A, Lin SY, Makriyannis A, Piomelli D. Functional role of high-affinity anandamide transport, as revealed by selective inhibition. Science. 1997;277(5329):1094–7.

    Article  CAS  PubMed  Google Scholar 

  133. Hillard CJ, Campbell WB. Biochemistry and pharmacology of arachidonylethanolamide, a putative endogenous cannabinoid. J Lipid Res. 1997;38(12):2383–98.

    CAS  PubMed  Google Scholar 

  134. Fegley D, Kathuria S, Mercier R, Li C, Goutopoulos A, Makriyannis A, et al. Anandamide transport is independent of fatty-acid amide hydrolase activity and is blocked by the hydrolysis-resistant inhibitor AM1172. Proc Natl Acad Sci U S A. 2004;101(23):8756–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Hillard CJ, Wilkison DM, Edgemond WS, Campbell WB. Characterization of the kinetics and distribution of N-arachidonylethanolamine (anandamide) hydrolysis by rat brain. Biochim Biophys Acta. 1995;1257(3):249–56.

    Article  PubMed  Google Scholar 

  136. Ueda N, Kurahashi Y, Yamamoto S, Tokunaga T. Partial purification and characterization of the porcine brain enzyme hydrolyzing and synthesizing anandamide. J Biol Chem. 1995;270(40):23823–7.

    Article  CAS  PubMed  Google Scholar 

  137. Cravatt BF, Giang DK, Mayfield SP, Boger DL, Lerner RA, Gilula NB. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature. 1996;384(6604):83–7.

    Article  CAS  PubMed  Google Scholar 

  138. Ade KK, Lovinger DM. Anandamide regulates postnatal development of long-term synaptic plasticity in the rat dorsolateral striatum. J Neurosci. 2007;27(9):2403–9.

    Article  CAS  PubMed  Google Scholar 

  139. Maccarrone M, Rossi S, Bari M, De Chiara V, Fezza F, Musella A, et al. Anandamide inhibits metabolism and physiological actions of 2-arachidonoylglycerol in the striatum. Nat Neurosci. 2008;11(2):152–9.

    Article  CAS  PubMed  Google Scholar 

  140. Maccarrone M, De Chiara V, Gasperi V, Viscomi MT, Rossi S, Oddi S, et al. Lipid rafts regulate 2-arachidonoylglycerol metabolism and physiological activity in the striatum. J Neurochem. 2009;109(2):371–81.

    Article  CAS  PubMed  Google Scholar 

  141. Rossi S, De Chiara V, Musella A, Sacchetti L, Cantarella C, Castelli M, et al. Preservation of striatal cannabinoid CB1 receptor function correlates with the antianxiety effects of fatty acid amide hydrolase inhibition. Mol Pharmacol. 2010;78(2):260–8.

    Article  CAS  PubMed  Google Scholar 

  142. Power BD, Stefanis NC, Dragovic M, Jablensky A, Castle D, Morgan V. Age at initiation of amphetamine use and age at onset of psychosis: the Australian Survey of High Impact Psychosis. Schizophr Res. 2014;152(1):300–2.

    Google Scholar 

  143. Muller-Vahl KR, Emrich HM. Cannabis and schizophrenia: towards a cannabinoid hypothesis of schizophrenia. Expert Rev Neurother. 2008;8(7):1037–48.

    Google Scholar 

  144. Giuffrida A, Leweke FM, Gerth CW, Schreiber D, Koethe D, Faulhaber J, et al. Cerebrospinal anandamide levels are elevated in acute schizophrenia and are inversely correlated with psychotic symptoms. Neuropsychopharmacology. 2004;29(11):2108–14.

    Article  CAS  PubMed  Google Scholar 

  145. Parolaro D, Realini N, Vigano D, Guidali C, Rubino T. The endocannabinoid system and psychiatric disorders. Exp Neurol. 2010;224(1):3–14.

    Article  CAS  PubMed  Google Scholar 

  146. De Marchi N De Petrocellis L Orlando P Daniele F Fezza F Di Marzo V. Endocannabinoid signalling in the blood of patients with schizophrenia. Lipids Health Dis. 2003;2:5.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Dean B, Sundram S, Bradbury R, Scarr E, Copolov D. Studies on [3H]CP-55940 binding in the human central nervous system: regional specific changes in density of cannabinoid-1 receptors associated with schizophrenia and cannabis use. Neuroscience. 2001;103(1):9–15.

    Article  CAS  PubMed  Google Scholar 

  148. Zavitsanou K, Garrick T, Huang XF. Selective antagonist [3H]SR141716 A binding to cannabinoid CB1 receptors is increased in the anterior cingulate cortex in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2004;28(2):355–60.

    Article  CAS  PubMed  Google Scholar 

  149. Newell KA, Deng C, Huang XF. Increased cannabinoid receptor density in the posterior cingulate cortex in schizophrenia. Exp Brain Res. 2006;172(4):556–60.

    Article  CAS  PubMed  Google Scholar 

  150. Uriguen L, Garcia-Fuster MJ, Callado LF, Morentin B, La Harpe R, Casado V, et al. Immunodensity and mRNA expression of A2 A adenosine, D2 dopamine, and CB1 cannabinoid receptors in postmortem frontal cortex of subjects with schizophrenia: effect of antipsychotic treatment. Psychopharmacology. 2009;206(2):313–24.

    Article  PubMed  CAS  Google Scholar 

  151. Broome MR, Woolley JB, Tabraham P, Johns LC, Bramon E, Murray GK, et al. What causes the onset of psychosis? Schizophr Res. 2005 ;79(1):23–34.

    Article  PubMed  Google Scholar 

  152. Iyo M, Sekine Y, Mori N. Neuromechanism of developing methamphetamine psychosis: a neuroimaging study. Ann N Y Acad Sci. 2004;1025:288–95.

    Article  CAS  PubMed  Google Scholar 

  153. Ujike H, Katsu T, Okahisa Y, Takaki M, Kodama M, Inada T, et al. Genetic variants of D2 but not D3 or D4 dopamine receptor gene are associated with rapid onset and poor prognosis of methamphetamine psychosis. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33(4):625–9.

    Article  CAS  PubMed  Google Scholar 

  154. Voruganti LN, Slomka P, Zabel P, Mattar A, Awad AG. Cannabis induced dopamine release: an in-vivo SPECT study. Psychiatry Res. 2001;107(3):173–7.

    Article  CAS  PubMed  Google Scholar 

  155. Bossong MG, van Berckel BN, Boellaard R, Zuurman L, Schuit RC, Windhorst AD, et al. Delta9-tetrahydrocannabinol induces dopamine release in the human striatum. Neuropsychopharmacology. 2009;34(3):759–66.

    Article  CAS  PubMed  Google Scholar 

  156. Stokes PR, Mehta MA, Curran HV, Breen G, Grasby PM. Can recreational doses of THC produce significant dopamine release in the human striatum? NeuroImage. 2009;48(1):186–90.

    Article  PubMed  Google Scholar 

  157. DʼSouza DC, Sewell RA, Ranganathan M. Cannabis and psychosis/schizophrenia: human studies. Eur Arch Psychiatry Clin Neurosci. 2009;259(7):413–31.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Okahisa Y, Kodama M, Takaki M, Inada T, Uchimura N, Yamada M, et al. Association Study of Two Cannabinoid Receptor Genes, CNR1 and CNR2, with Methamphetamine Dependence. Curr Neuropharmacol. 2011;9(1):183–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Ujike H, Takaki M, Nakata K, Tanaka Y, Takeda T, Kodama M, et al. CNR1, central cannabinoid receptor gene, associated with susceptibility to hebephrenic schizophrenia. Molecular Psychiatry. 2002;7(5):515–8.

    Article  CAS  PubMed  Google Scholar 

  160. Martinez-Gras I, Hoenicka J, Ponce G, Rodriguez-Jimenez R, Jimenez-Arriero MA, Perez-Hernandez E, et al. (AAT)n repeat in the cannabinoid receptor gene, CNR1: association with schizophrenia in a Spanish population. Eur Arch Psychiatry Clin Neurosci. 2006;256(7):437–41.

    Article  PubMed  Google Scholar 

  161. Ballmaier M, Bortolato M, Rizzetti C, Zoli M, Gessa G, Heinz A, et al. Cannabinoid receptor antagonists counteract sensorimotor gating deficits in the phencyclidine model of psychosis. Neuropsychopharmacology. 2007;32(10):2098–107.

    Article  CAS  PubMed  Google Scholar 

  162. Tzavara ET, Degroot A, Wade MR, Davis RJ, Nomikos GG. CB1 receptor knockout mice are hyporesponsive to the behavior-stimulating actions of d-amphetamine: role of mGlu5 receptors. Eur Neuropsychopharmacol. 2009;19(3):196–204.

    Article  CAS  PubMed  Google Scholar 

  163. Meltzer HY, Arvanitis L, Bauer D, Rein W, Meta-Trial Study G. Placebo-controlled evaluation of four novel compounds for the treatment of schizophrenia and schizoaffective disorder. Am J Psychiatry. 2004;161(6):975–84.

    Article  PubMed  Google Scholar 

  164. Fergusson DM, Horwood LJ. Does cannabis use encourage other forms of illicit drug use? Addiction. 2000 Apr;95(4):505–20.

    Article  CAS  PubMed  Google Scholar 

  165. Morral AR, McCaffrey DF, Paddock SM. Reassessing the marijuana gateway effect. Addiction. 2002;97(12):1493–504.

    Article  PubMed  Google Scholar 

  166. Hall WD, Lynskey M. Is cannabis a gateway drug? Testing hypotheses about the relationship between cannabis use and the use of other illicit drugs. Drug Alcohol Rev. 2005;24(1):39–48.

    Article  PubMed  Google Scholar 

  167. Molitor F, Ruiz JD, Flynn N, Mikanda JN, Sun RK, Anderson R. Methamphetamine use and sexual and injection risk behaviors among out-of-treatment injection drug users. Am J Drug Alcohol Abuse. 1999;25(3):475–93.

    Article  CAS  PubMed  Google Scholar 

  168. Baskin-Sommers A, Sommers I. The co-occurrence of substance use and high-risk behaviors. J Adolesc Health. 2006;38(5):609–11.

    Article  PubMed  Google Scholar 

  169. Scott LA, Roxburgh A, Bruno R, Matthews A, Burns L. The impact of comorbid cannabis and methamphetamine use on mental health among regular ecstasy users. Addict Behav. 2012;37(9):1058–62.

    Article  PubMed  Google Scholar 

  170. Churchwell JC, Carey PD, Ferrett HL, Stein DJ, Yurgelun-Todd DA. Abnormal striatal circuitry and intensified novelty seeking among adolescents who abuse methamphetamine and cannabis. Dev Neurosci. 2012;34(4):310–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Oliere S, Joliette-Riopel A, Potvin S, Jutras-Aswad D. Modulation of the endocannabinoid system: vulnerability factor and new treatment target for stimulant addiction. Front Psychiatry. 2013;4:109.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Dlugos AM, Hamidovic A, Hodgkinson CA, Goldman D, Palmer AA, de Wit H. More aroused, less fatigued: fatty acid amide hydrolase gene polymorphisms influence acute response to amphetamine. Neuropsychopharmacology. 2010;35(3):613–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Sipe JC, Chiang K, Gerber AL, Beutler E, Cravatt BF. A missense mutation in human fatty acid amide hydrolase associated with problem drug use. Proc Natl Acad Sci U S A. 2002;99(12):8394–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Morita Y, Ujike H, Tanaka Y, Uchida N, Nomura A, Ohtani K, et al. A nonsynonymous polymorphism in the human fatty acid amide hydrolase gene did not associate with either methamphetamine dependence or schizophrenia. Neurosci Lett. 2005;376(3):182–7.

    Article  CAS  PubMed  Google Scholar 

  175. Comings DE, Muhleman D, Gade R, Johnson P, Verde R, Saucier G, et al. Cannabinoid receptor gene (CNR1): association with i.v. drug use. Mol Psychiatry. 1997;2(2):161–8.

    Article  CAS  PubMed  Google Scholar 

  176. Zhang PW, Ishiguro H, Ohtsuki T, Hess J, Carillo F, Walther D, et al. Human cannabinoid receptor 1: 5ʼ exons, candidate regulatory regions, polymorphisms, haplotypes and association with polysubstance abuse. Mol Psychiatry. 2004;9(10):916–31.

    Article  CAS  PubMed  Google Scholar 

  177. Madsen MV, Peacock L, Werge T, Andersen MB. Effects of the cannabinoid CB1 receptor agonist CP55,940 and antagonist SR141716 A on d-amphetamine-induced behaviours in Cebus monkeys. J Psychopharmacol. 2006;20(5):622–8.

    Article  CAS  PubMed  Google Scholar 

  178. Cortright JJ, Lorrain DS, Beeler JA, Tang WJ, Vezina P. Previous exposure to delta9-tetrahydrocannibinol enhances locomotor responding to but not self-administration of amphetamine. J Pharmacol Exp Ther. 2011;337(3):724–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Vinklerova J, Novakova J, Sulcova A. Inhibition of methamphetamine self-administration in rats by cannabinoid receptor antagonist AM 251. J Psychopharmacol. 2002;16(2):139–43.

    Article  CAS  PubMed  Google Scholar 

  180. Schindler CW, Panlilio LV, Gilman JP, Justinova Z, Vemuri VK, Makriyannis A, et al. Effects of cannabinoid receptor antagonists on maintenance and reinstatement of methamphetamine self-administration in rhesus monkeys. Eur J Pharmacol. 2010;633(1–3):44–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Yu LL, Wang XY, Zhao M, Liu Y, Li YQ, Li FQ, et al. Effects of cannabinoid CB1 receptor antagonist rimonabant in consolidation and reconsolidation of methamphetamine reward memory in mice. Psychopharmacology. 2009;204(2):203–11.

    Article  CAS  PubMed  Google Scholar 

  182. Yu LL, Zhou SJ, Wang XY, Liu JF, Xue YX, Jiang W, et al. Effects of cannabinoid CB(1) receptor antagonist rimonabant on acquisition and reinstatement of psychostimulant reward memory in mice. Behav Brain Res. 2011;217(1):111–6.

    Article  CAS  PubMed  Google Scholar 

  183. Hiranita T, Nawata Y, Sakimura K, Yamamoto T. Methamphetamine-seeking behavior is due to inhibition of nicotinic cholinergic transmission by activation of cannabinoid CB1 receptors. Neuropharmacology. 2008;55(8):1300–6.

    Article  CAS  PubMed  Google Scholar 

  184. Rodriguez JS, Boctor SY, Flores LC, Phelix CF, Martinez JL, Jr. Local pretreatment with the cannabinoid CB1 receptor antagonist AM251 attenuates methamphetamine intra-accumbens self-administration. Neurosci Lett. 2011;489(3):187–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Anggadiredja K, Nakamichi M, Hiranita T, Tanaka H, Shoyama Y, Watanabe S, et al. Endocannabinoid system modulates relapse to methamphetamine seeking: possible mediation by the arachidonic acid cascade. Neuropsychopharmacology. 2004;29(8):1470–8.

    Article  CAS  PubMed  Google Scholar 

  186. Boctor SY, Martinez JL, Jr., Koek W, France CP. The cannabinoid CB1 receptor antagonist AM251 does not modify methamphetamine reinstatement of responding. Eur J Pharmacol. 2007;571(1):39–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Loewinger GC, Beckert MV, Tejeda HA, Cheer JF. Methamphetamine-induced dopamine terminal deficits in the nucleus accumbens are exacerbated by reward-associated cues and attenuated by CB1 receptor antagonism. Neuropharmacology. 2012;62(7):2192–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Wiskerke J, Stoop N, Schetters D, Schoffelmeer AN, Pattij T. Cannabinoid CB1 receptor activation mediates the opposing effects of amphetamine on impulsive action and impulsive choice. PloS one. 2011;6(10):e25856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Parker LA, Burton P, Sorge RE, Yakiwchuk C, Mechoulam R. Effect of low doses of delta9-tetrahydrocannabinol and cannabidiol on the extinction of cocaine-induced and amphetamine-induced conditioned place preference learning in rats. Psychopharmacology. 2004;175(3):360–6.

    Article  CAS  PubMed  Google Scholar 

  190. Poncelet M, Barnouin MC, Breliere JC, Le Fur G, Soubrie P. Blockade of cannabinoid (CB1) receptors by 141716 selectively antagonizes drug-induced reinstatement of exploratory behaviour in gerbils. Psychopharmacology. 1999;144(2):144–50.

    Article  CAS  PubMed  Google Scholar 

  191. Tzavara ET, Davis RJ, Perry KW, Li X, Salhoff C, Bymaster FP, et al. The CB1 receptor antagonist SR141716 A selectively increases monoaminergic neurotransmission in the medial prefrontal cortex: implications for therapeutic actions. Br J Pharmacol. 2003;138(4):544–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Morra JT, Glick SD, Cheer JF. Neural encoding of psychomotor activation in the nucleus accumbens core, but not the shell, requires cannabinoid receptor signaling. J Neurosci. 2010;30(14):5102–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Morra JT, Glick SD, Cheer JF. Cannabinoid receptors mediate methamphetamine induction of high frequency gamma oscillations in the nucleus accumbens. Neuropharmacology. 2012;63(4):565–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Ferrer B, Gorriti MA, Palomino A, Gornemann I, de Diego Y, Bermudez-Silva FJ, et al. Cannabinoid CB1 receptor antagonism markedly increases dopamine receptor-mediated stereotypies. Eur J Pharmacol. 2007;559(2–3):180–3.

    Article  CAS  PubMed  Google Scholar 

  195. Marcellino D, Carriba P, Filip M, Borgkvist A, Frankowska M, Bellido I, et al. Antagonistic cannabinoid CB1/dopamine D2 receptor interactions in striatal CB1/D2 heteromers. A combined neurochemical and behavioral analysis. Neuropharmacology. 2008;54(5):815–23.

    Article  CAS  PubMed  Google Scholar 

  196. Houchi H, Babovic D, Pierrefiche O, Ledent C, Daoust M, Naassila M. CB1 receptor knockout mice display reduced ethanol-induced conditioned place preference and increased striatal dopamine D2 receptors. Neuropsychopharmacology. 2005;30(2):339–49.

    Article  CAS  PubMed  Google Scholar 

  197. Miller DK, Rodvelt KR, Constales C, Putnam WC. Analogs of SR-141716 A (Rimonabant) alter d-amphetamine-evoked [3H] dopamine overflow from preloaded striatal slices and amphetamine-induced hyperactivity. Life Sci. 2007;81(1):63–71.

    Article  CAS  PubMed  Google Scholar 

  198. Li X, Hoffman AF, Peng XQ, Lupica CR, Gardner EL, Xi ZX. Attenuation of basal and cocaine-enhanced locomotion and nucleus accumbens dopamine in cannabinoid CB1-receptor-knockout mice. Psychopharmacology. 2009;204(1):1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Gorriti MA, Rodriguez de Fonseca F, Navarro M, Palomo T. Chronic (-)-delta9-tetrahydrocannabinol treatment induces sensitization to the psychomotor effects of amphetamine in rats. Eur J Pharmacol. 1999;365(2–3):133–42.

    Article  CAS  PubMed  Google Scholar 

  200. Landa L, Sulcova A, Slais K. Involvement of cannabinoid CB1 and CB2 receptor activity in the development of behavioural sensitization to methamphetamine effects in mice. Neuro Endocrinol Lett. 2006;27(1–2):63–9.

    CAS  PubMed  Google Scholar 

  201. Corbille AG, Valjent E, Marsicano G, Ledent C, Lutz B, Herve D, et al. Role of cannabinoid type 1 receptors in locomotor activity and striatal signaling in response to psychostimulants. J Neurosci. 2007;27(26):6937–47.

    Article  CAS  PubMed  Google Scholar 

  202. Thiemann G, Di Marzo V, Molleman A, Hasenohrl RU. The CB(1) cannabinoid receptor antagonist AM251 attenuates amphetamine-induced behavioural sensitization while causing monoamine changes in nucleus accumbens and hippocampus. Pharmacol Biochem Behav. 2008;89(3):384–91.

    Article  CAS  PubMed  Google Scholar 

  203. Burchett SA, Hicks TP. The mysterious trace amines: protean neuromodulators of synaptic transmission in mammalian brain. Prog Neurobiol. 2006;79(5–6):223–46.

    Article  CAS  PubMed  Google Scholar 

  204. Xie Z, Miller GM. A receptor mechanism for methamphetamine action in dopamine transporter regulation in brain. J Pharmacol Exp Ther. 2009;330(1):316–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Tanda G, Pontieri FE, Di Chiara G. Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common mu1 opioid receptor mechanism. Science. 1997;276(5321):2048–50.

    Article  CAS  PubMed  Google Scholar 

  206. Beltramo M, de Fonseca FR, Navarro M, Calignano A, Gorriti MA, Grammatikopoulos G, et al. Reversal of dopamine D(2) receptor responses by an anandamide transport inhibitor. J Neurosci. 2000;20(9):3401–7.

    CAS  PubMed  Google Scholar 

  207. Gerdeman GL F-RJ. The endocannabinoid system in the physiology and pathophysiology of the basal ganglia. In: A K, editor. Cannabinoids and the brain. New York: Springer-Verlag; 2008. pp. 423–83.

    Chapter  Google Scholar 

  208. Solinas M, Goldberg SR, Piomelli D. The endocannabinoid system in brain reward processes. Br J Pharmacol. 2008;154(2):369–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Sotnikova TD, Zorina OI, Ghisi V, Caron MG, Gainetdinov RR. Trace amine associated receptor 1 and movement control. Parkinsonism Relat Disord. 2008;14(Suppl 2):99–102.

    Article  Google Scholar 

  210. Bradaia A, Trube G, Stalder H, Norcross RD, Ozmen L, Wettstein JG, et al. The selective antagonist EPPTB reveals TAAR1-mediated regulatory mechanisms in dopaminergic neurons of the mesolimbic system. Proc Natl Acad Sci U S A. 2009;106(47):20081–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Hernandez M, Berrendero F, Suarez I, Garcia-Gil L, Cebeira M, Mackie K, et al. Cannabinoid CB(1) receptors colocalize with tyrosine hydroxylase in cultured fetal mesencephalic neurons and their activation increases the levels of this enzyme. Brain Res. 2000;857(1–2):56–65.

    Article  CAS  PubMed  Google Scholar 

  212. Wenger T, Moldrich G, Furst S. Neuromorphological background of cannabis addiction. Brain Res Bull. 2003;61(2):125–8.

    Article  CAS  PubMed  Google Scholar 

  213. Lau T, Schloss P. The cannabinoid CB1 receptor is expressed on serotonergic and dopaminergic neurons. Eur J Pharmacol. 2008;578(2–3):137–41.

    Article  CAS  PubMed  Google Scholar 

  214. Laviolette SR, Grace AA. The roles of cannabinoid and dopamine receptor systems in neural emotional learning circuits: implications for schizophrenia and addiction. Cell Mol Life Sci: CMLS. 2006;63(14):1597–613.

    Article  CAS  PubMed  Google Scholar 

  215. Brown JA, Horvath S, Garbett K, Schmidt MJ, Everheart M, Gellert L, et al. The role of cannabinoid 1 receptor expressing interneurons in behavior. Neurobiol Dis. 2014;63:210–21.

    Google Scholar 

  216. Bortolato M, Frau R, Bini V, Luesu W, Loriga R, Collu M, et al. Methamphetamine neurotoxicity increases brain expression and alters behavioral functions of CB(1) cannabinoid receptors. J Psychiatr Res. 2010;44(14):944–55.

    Article  PubMed  Google Scholar 

  217. Piazza PV, Deminiere JM, Le Moal M, Simon H. Factors that predict individual vulnerability to amphetamine self-administration. Science. 1989;245(4925):1511–3.

    Article  CAS  PubMed  Google Scholar 

  218. Kelly TH, Robbins G, Martin CA, Fillmore MT, Lane SD, Harrington NG, et al. Individual differences in drug abuse vulnerability: d-amphetamine and sensation-seeking status. Psychopharmacology. 2006;189(1):17–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Giuffrida A, Parsons LH, Kerr TM, Rodriguez de Fonseca F, Navarro M, Piomelli D. Dopamine activation of endogenous cannabinoid signaling in dorsal striatum. Nat Neurosci. 1999;2(4):358–63.

    Article  CAS  PubMed  Google Scholar 

  220. Tzavara ET, Li DL, Moutsimilli L, Bisogno T, Di Marzo V, Phebus LA, et al. Endocannabinoids activate transient receptor potential vanilloid 1 receptors to reduce hyperdopaminergia-related hyperactivity: therapeutic implications. Biol Psychiatry. 2006;59(6):508–15.

    Article  CAS  PubMed  Google Scholar 

  221. Gardner EL. Endocannabinoid signaling system and brain reward: emphasis on dopamine. Pharmacol Biochem Behav. 2005;81(2):263–84.

    Article  CAS  PubMed  Google Scholar 

  222. Kleijn J, Wiskerke J, Cremers TI, Schoffelmeer AN, Westerink BH, Pattij T. Effects of amphetamine on dopamine release in the rat nucleus accumbens shell region depend on cannabinoid CB1 receptor activation. Neurochem Int. 2012;60(8):791–8.

    Article  CAS  PubMed  Google Scholar 

  223. Melis M, Pistis M, Perra S, Muntoni AL, Pillolla G, Gessa GL. Endocannabinoids mediate presynaptic inhibition of glutamatergic transmission in rat ventral tegmental area dopamine neurons through activation of CB1 receptors. J Neurosci. 2004;24(1):53–62.

    Article  CAS  PubMed  Google Scholar 

  224. Kreitzer AC, Malenka RC. Dopamine modulation of state-dependent endocannabinoid release and long-term depression in the striatum. J Neurosci. 2005;25(45):10537–45.

    Article  CAS  PubMed  Google Scholar 

  225. Yin HH, Lovinger DM. Frequency-specific and D2 receptor-mediated inhibition of glutamate release by retrograde endocannabinoid signaling. Proc Natl Acad Sci U S A. 2006;103(21):8251–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Shen W, Flajolet M, Greengard P, Surmeier DJ. Dichotomous dopaminergic control of striatal synaptic plasticity. Science. 2008;321(5890):848–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Chiu CQ, Puente N, Grandes P, Castillo PE. Dopaminergic modulation of endocannabinoid-mediated plasticity at GABAergic synapses in the prefrontal cortex. J Neurosci. 2010;30(21):7236–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Gubellini P, Picconi B, Bari M, Battista N, Calabresi P, Centonze D, et al. Experimental parkinsonism alters endocannabinoid degradation: implications for striatal glutamatergic transmission. J Neurosci. 2002;22(16):6900–7.

    CAS  PubMed  Google Scholar 

  229. Lastres-Becker I, Cebeira M, de Ceballos ML, Zeng BY, Jenner P, Ramos JA, et al. Increased cannabinoid CB1 receptor binding and activation of GTP-binding proteins in the basal ganglia of patients with Parkinsonʼs syndrome and of MPTP-treated marmosets. Eur J Neurosci. 2001;14(11):1827–32.

    Article  CAS  PubMed  Google Scholar 

  230. Di Marzo V Hill MP Bisogno T Crossman AR Brotchie JM. Enhanced levels of endogenous cannabinoids in the globus pallidus are associated with a reduction in movement in an animal model of Parkinsonʼs disease. FASEB J. 2000;14(10):1432–8.

    Article  CAS  PubMed  Google Scholar 

  231. Kerr JN, Wickens JR. Dopamine D-1/D-5 receptor activation is required for long-term potentiation in the rat neostriatum in vitro. J Neurophysiol. 2001;85(1):117–24.

    CAS  PubMed  Google Scholar 

  232. Calabresi P, Saiardi A, Pisani A, Baik JH, Centonze D, Mercuri NB, et al. Abnormal synaptic plasticity in the striatum of mice lacking dopamine D2 receptors. J Neurosci. 1997;17(12):4536–44.

    CAS  PubMed  Google Scholar 

  233. Yamamoto Y, Nakanishi H, Takai N, Shimazoe T, Watanabe S, Kita H. Expression of N-methyl-D-aspartate receptor-dependent long-term potentiation in the neostriatal neurons in an in vitro slice after ethanol withdrawal of the rat. Neuroscience. 1999;91(1):59–68.

    Article  CAS  PubMed  Google Scholar 

  234. Kalivas PW, Sorg BA, Hooks MS. The pharmacology and neural circuitry of sensitization to psychostimulants. Behav Pharmacol. 1993;4(4):315–34.

    Article  CAS  PubMed  Google Scholar 

  235. Canales JJ, Capper-Loup C, Hu D, Choe ES, Upadhyay U, Graybiel AM. Shifts in striatal responsivity evoked by chronic stimulation of dopamine and glutamate systems. Brain. 2002;125(Pt 10):2353–63.

    Article  CAS  PubMed  Google Scholar 

  236. Capper-Loup C, Canales JJ, Kadaba N, Graybiel AM. Concurrent activation of dopamine D1 and D2 receptors is required to evoke neural and behavioral phenotypes of cocaine sensitization. J Neurosci. 2002;22(14):6218–27.

    CAS  PubMed  Google Scholar 

  237. Szabo B, Muller T, Koch H. Effects of cannabinoids on dopamine release in the corpus striatum and the nucleus accumbens in vitro. J Neurochem. 1999;73(3):1084–9.

    Article  CAS  PubMed  Google Scholar 

  238. Szabo B, Siemes S, Wallmichrath I. Inhibition of GABAergic neurotransmission in the ventral tegmental area by cannabinoids. Eur J Neurosci. 2002;15(12):2057–61.

    Article  PubMed  Google Scholar 

  239. Robbe D, Alonso G, Duchamp F, Bockaert J, Manzoni OJ. Localization and mechanisms of action of cannabinoid receptors at the glutamatergic synapses of the mouse nucleus accumbens. J Neurosci. 2001;21(1):109–16.

    CAS  PubMed  Google Scholar 

  240. Pistis M, Muntoni AL, Pillolla G, Gessa GL. Cannabinoids inhibit excitatory inputs to neurons in the shell of the nucleus accumbens: an in vivo electrophysiological study. Eur J Neurosci. 2002;15(11):1795–802.

    Article  PubMed  Google Scholar 

  241. Lupica CR, Riegel AC. Endocannabinoid release from midbrain dopamine neurons: a potential substrate for cannabinoid receptor antagonist treatment of addiction. Neuropharmacology. 2005;48(8):1105–16.

    Article  CAS  PubMed  Google Scholar 

  242. Wolf ME. The role of excitatory amino acids in behavioral sensitization to psychomotor stimulants. Prog Neurobiol. 1998;54(6):679–720.

    Article  CAS  PubMed  Google Scholar 

  243. Wise RA, Bozarth MA. A psychomotor stimulant theory of addiction. Psychol Rev. 1987;94(4):469–92.

    Article  CAS  PubMed  Google Scholar 

  244. Kalivas PW, Stewart J. Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity. Brain Res Brain Res Rev. 1991;16(3):223–44.

    Article  CAS  PubMed  Google Scholar 

  245. White FJ, Kalivas PW. Neuroadaptations involved in amphetamine and cocaine addiction. Drug Alcohol Depend. 1998;51(1–2):141–53.

    Article  CAS  PubMed  Google Scholar 

  246. Kalivas PW, Weber B. Amphetamine injection into the ventral mesencephalon sensitizes rats to peripheral amphetamine and cocaine. J Pharmacol Exp Ther. 1988;245(3):1095–102.

    CAS  PubMed  Google Scholar 

  247. Vezina P, Stewart J. Amphetamine administered to the ventral tegmental area but not to the nucleus accumbens sensitizes rats to systemic morphine: lack of conditioned effects. Brain Res. 1990;516(1):99–106.

    Article  CAS  PubMed  Google Scholar 

  248. Jones S, Kornblum JL, Kauer JA. Amphetamine blocks long-term synaptic depression in the ventral tegmental area. J Neurosci. 2000;20(15):5575–80.

    CAS  PubMed  Google Scholar 

  249. Tong ZY, Overton PG, Clark D. Chronic administration of (+)-amphetamine alters the reactivity of midbrain dopaminergic neurons to prefrontal cortex stimulation in the rat. Brain Res. 1995;674(1):63–74.

    Article  CAS  PubMed  Google Scholar 

  250. White FJ, Hu XT, Zhang XF, Wolf ME. Repeated administration of cocaine or amphetamine alters neuronal responses to glutamate in the mesoaccumbens dopamine system. J Pharmacol Exp Ther. 1995;273(1):445–54.

    CAS  PubMed  Google Scholar 

  251. Fitzgerald LW, Ortiz J, Hamedani AG, Nestler EJ. Drugs of abuse and stress increase the expression of GluR1 and NMDAR1 glutamate receptor subunits in the rat ventral tegmental area: common adaptations among cross-sensitizing agents. J Neurosci. 1996;16(1):274–82.

    CAS  PubMed  Google Scholar 

  252. Zhang XF, Hu XT, White FJ, Wolf ME. Increased responsiveness of ventral tegmental area dopamine neurons to glutamate after repeated administration of cocaine or amphetamine is transient and selectively involves AMPA receptors. J Pharmacol Exp Ther. 1997;281(2):699–706.

    CAS  PubMed  Google Scholar 

  253. Cadogan AK, Alexander SP, Boyd EA, Kendall DA. Influence of cannabinoids on electrically evoked dopamine release and cyclic AMP generation in the rat striatum. J Neurochem. 1997;69(3):1131–7.

    Article  CAS  PubMed  Google Scholar 

  254. Glass M, Felder CC. Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors augments cAMP accumulation in striatal neurons: evidence for a Gs linkage to the CB1 receptor. J Neurosci. 1997;17(14):5327–33.

    CAS  PubMed  Google Scholar 

  255. Gerdeman G, Lovinger DM. CB1 cannabinoid receptor inhibits synaptic release of glutamate in rat dorsolateral striatum. J Neurophysiol. 2001;85(1):468–71.

    CAS  PubMed  Google Scholar 

  256. Herkenham M, Lynn AB, Johnson MR, Melvin LS, de Costa BR, Rice KC. Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci. 1991;11(2):563–83.

    CAS  PubMed  Google Scholar 

  257. Tsou K, Brown S, Sanudo-Pena MC, Mackie K, Walker JM. Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system. Neuroscience. 1998;83(2):393–411.

    Article  CAS  PubMed  Google Scholar 

  258. Hermann H, Marsicano G, Lutz B. Coexpression of the cannabinoid receptor type 1 with dopamine and serotonin receptors in distinct neuronal subpopulations of the adult mouse forebrain. Neuroscience. 2002;109(3):451–60.

    Article  CAS  PubMed  Google Scholar 

  259. Julian MD, Martin AB, Cuellar B, Rodriguez De Fonseca F, Navarro M, Moratalla R, et al. Neuroanatomical relationship between type 1 cannabinoid receptors and dopaminergic systems in the rat basal ganglia. Neuroscience. 2003;119(1):309–18.

    Article  CAS  PubMed  Google Scholar 

  260. Martin AB, Fernandez-Espejo E, Ferrer B, Gorriti MA, Bilbao A, Navarro M, et al. Expression and function of CB1 receptor in the rat striatum: localization and effects on D1 and D2 dopamine receptor-mediated motor behaviors. Neuropsychopharmacology. 2008;33(7):1667–79.

    Article  CAS  PubMed  Google Scholar 

  261. Gonzalez B, Paz F, Floran L, Aceves J, Erlij D, Floran B. Cannabinoid agonists stimulate [3H]GABA release in the globus pallidus of the rat when G(i) protein-receptor coupling is restricted: role of dopamine D2 receptors. J Pharmacol Exp Ther. 2009;328(3):822–8.

    Article  CAS  PubMed  Google Scholar 

  262. Landa L, Jurajda M, Sulcova A. Altered dopamine D1 and D2 receptor mRNA expression in mesencephalon from mice exposed to repeated treatments with methamphetamine and cannabinoid CB1 agonist methanandamide. Neuro Endocrinol Lett. 2012;33(4):446–52.

    CAS  PubMed  Google Scholar 

  263. Maneuf YP, Crossman AR, Brotchie JM. The cannabinoid receptor agonist WIN 55,212–2 reduces D2, but not D1, dopamine receptor-mediated alleviation of akinesia in the reserpine-treated rat model of Parkinsonʼs disease. Exp Neurol. 1997;148(1):265–70.

    Article  CAS  PubMed  Google Scholar 

  264. Rodriguez de Fonseca F Del Arco I Martin-Calderon JL Gorriti MA Navarro M. Role of the endogenous cannabinoid system in the regulation of motor activity. Neurobiol Dis. 1998;5(6 Pt B):483–501.

    Article  CAS  PubMed  Google Scholar 

  265. Andersson M, Usiello A, Borgkvist A, Pozzi L, Dominguez C, Fienberg AA, et al. Cannabinoid action depends on phosphorylation of dopamine- and cAMP-regulated phosphoprotein of 32 kDa at the protein kinase A site in striatal projection neurons. J Neurosci. 2005;25(37):8432–8.

    Article  CAS  PubMed  Google Scholar 

  266. Lane DA, Chan J, Fitzgerald ML, Kearn CS, Mackie K, Pickel VM. Quinpirole elicits differential in vivo changes in the pre- and postsynaptic distributions of dopamine D(2) receptors in mouse striatum: relation to cannabinoid-1 (CB(1)) receptor targeting. Psychopharmacology. 2012;221(1):101–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Calabresi P, Maj R, Pisani A, Mercuri NB, Bernardi G. Long-term synaptic depression in the striatum: physiological and pharmacological characterization. J Neurosci. 1992;12(11):4224–33.

    CAS  PubMed  Google Scholar 

  268. Choi S, Lovinger DM. Decreased probability of neurotransmitter release underlies striatal long-term depression and postnatal development of corticostriatal synapses. Proc Natl Acad Sci U S A. 1997;94(6):2665–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Centonze D, Gubellini P, Picconi B, Calabresi P, Giacomini P, Bernardi G. Unilateral dopamine denervation blocks corticostriatal LTP. J Neurophysiol. 1999;82(6):3575–9.

    CAS  PubMed  Google Scholar 

  270. Kung VW, Hassam R, Morton AJ, Jones S. Dopamine-dependent long term potentiation in the dorsal striatum is reduced in the R6/2 mouse model of Huntingtonʼs disease. Neuroscience. 2007;146(4):1571–80.

    Article  CAS  PubMed  Google Scholar 

  271. Stern EA, Jaeger D, Wilson CJ. Membrane potential synchrony of simultaneously recorded striatal spiny neurons in vivo. Nature. 1998;394(6692):475–8

    Article  CAS  PubMed  Google Scholar 

  272. Chiang YC, Chen JC. The role of the cannabinoid type 1 receptor and down-stream cAMP/DARPP-32 signal in the nucleus accumbens of methamphetamine-sensitized rats. J Neurochem. 2007;103(6):2505–17.

    Article  CAS  PubMed  Google Scholar 

  273. Calabresi P, Gubellini P, Centonze D, Picconi B, Bernardi G, Chergui K, et al. Dopamine and cAMP-regulated phosphoprotein 32 kDa controls both striatal long-term depression and long-term potentiation, opposing forms of synaptic plasticity. J Neurosci. 2000;20(22):8443–51.

    CAS  PubMed  Google Scholar 

  274. Kearn CS, Blake-Palmer K, Daniel E, Mackie K, Glass M. Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors enhances heterodimer formation: a mechanism for receptor cross-talk? Mol Pharmacol. 2005;67(5):1697–704.

    Article  CAS  PubMed  Google Scholar 

  275. Huang YC, Wang SJ, Chiou LC, Gean PW. Mediation of amphetamine-induced long-term depression of synaptic transmission by CB1 cannabinoid receptors in the rat amygdala. J Neurosci. 2003;23(32):10311–20.

    CAS  PubMed  Google Scholar 

  276. Chavez AE, Chiu CQ, Castillo PE. TRPV1 activation by endogenous anandamide triggers postsynaptic long-term depression in dentate gyrus. Nat Neurosci. 2010;13(12):1511–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Mezey E, Toth ZE, Cortright DN, Arzubi MK, Krause JE, Elde R, et al. Distribution of mRNA for vanilloid receptor subtype 1 (VR1), and VR1-like immunoreactivity, in the central nervous system of the rat and human. Proc Natl Acad Sci U S A. 2000;97(7):3655–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Bisogno T, Hanus L, De Petrocellis L, Tchilibon S, Ponde DE, Brandi I, et al. Molecular targets for cannabidiol and its synthetic analogues: effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide. Br J Pharmacol. 2001;134(4):845–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Costa B, Giagnoni G, Franke C, Trovato AE, Colleoni M. Vanilloid TRPV1 receptor mediates the antihyperalgesic effect of the nonpsychoactive cannabinoid, cannabidiol, in a rat model of acute inflammation. Br J Pharmacol. 2004;143(2):247–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. De Petrocellis L, Ligresti A, Moriello AS, Allara M, Bisogno T, Petrosino S, et al. Effects of cannabinoids and cannabinoid-enriched Cannabis extracts on TRP channels and endocannabinoid metabolic enzymes. Br J Pharmacol. 2011;163(7):1479–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  281. Moreira FA, Guimaraes FS. Cannabidiol inhibits the hyperlocomotion induced by psychotomimetic drugs in mice. Eur J Pharmacol. 2005;512(2–3):199–205.

    Article  CAS  PubMed  Google Scholar 

  282. Starowicz K, Nigam S, Di Marzo V. Biochemistry and pharmacology of endovanilloids. Pharmacol Ther. 2007;114(1):13–33.

    Article  CAS  PubMed  Google Scholar 

  283. Hu SS, Bradshaw HB, Benton VM, Chen JS, Huang SM, Minassi A, et al. The biosynthesis of N-arachidonoyl dopamine (NADA), a putative endocannabinoid and endovanilloid, via conjugation of arachidonic acid with dopamine. Prostaglandins Leukot Essent Fatty Acids. 2009;81(4):291–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Bobrov MY, Lizhin AA, Andrianova EL, Gretskaya NM, Frumkina LE, Khaspekov LG, et al. Antioxidant and neuroprotective properties of N-arachidonoyldopamine. Neurosci Lett. 2008;431(1):6–11.

    Article  CAS  PubMed  Google Scholar 

  285. Oz M, Jaligam V, Galadari S, Petroianu G, Shuba YM, Shippenberg TS. The endogenous cannabinoid, anandamide, inhibits dopamine transporter function by a receptor-independent mechanism. J Neurochem. 2010;112(6):1454–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Onaivi ES, Green MR, Martin BR. Pharmacological characterization of cannabinoids in the elevated plus maze. J Pharmacol Exp Ther. 1990;253(3):1002–9.

    CAS  PubMed  Google Scholar 

  287. Ortega-Alvaro A, Aracil-Fernandez A, Garcia-Gutierrez MS, Navarrete F, Manzanares J. Deletion of CB2 cannabinoid receptor induces schizophrenia-related behaviors in mice. Neuropsychopharmacology. 2011;36(7):1489–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Nossoll M, Teuchert-Noodt G, Dawirs RR. A single dose of methamphetamine in neonatal gerbils affects adult prefrontal gamma-aminobutyric acid innervation. Eur J Pharmacol. 1997;340(2–3):R3–5.

    CAS  PubMed  Google Scholar 

  289. Gonzalez R, Rippeth JD, Carey CL, Heaton RK, Moore DJ, Schweinsburg BC, et al. Neurocognitive performance of methamphetamine users discordant for history of marijuana exposure. Drug Alcohol Depend. 2004;76(2):181–90.

    Article  CAS  PubMed  Google Scholar 

  290. Jin KL, Mao XO, Goldsmith PC, Greenberg DA. CB1 cannabinoid receptor induction in experimental stroke. Ann Neurol. 2000;48(2):257–61.

    Article  CAS  PubMed  Google Scholar 

  291. Fernandez-Lopez D, Martinez-Orgado J, Nunez E, Romero J, Lorenzo P, Moro MA, et al. Characterization of the neuroprotective effect of the cannabinoid agonist WIN-55212 in an in vitro model of hypoxic-ischemic brain damage in newborn rats. Pediatr Res. 2006;60(2):169–73.

    Article  CAS  PubMed  Google Scholar 

  292. Nagayama T, Sinor AD, Simon RP, Chen J, Graham SH, Jin K, et al. Cannabinoids and neuroprotection in global and focal cerebral ischemia and in neuronal cultures. J Neurosci. 1999;19(8):2987–95.

    CAS  PubMed  Google Scholar 

  293. Marsicano G, Goodenough S, Monory K, Hermann H, Eder M, Cannich A, et al. CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science. 2003;302(5642):84–8.

    Article  CAS  PubMed  Google Scholar 

  294. Marchalant Y, Rosi S, Wenk GL. Anti-inflammatory property of the cannabinoid agonist WIN-55212–2 in a rodent model of chronic brain inflammation. Neuroscience. 2007;144(4):1516–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Solbrig MV, Hermanowicz N. Cannabinoid rescue of striatal progenitor cells in chronic Borna disease viral encephalitis in rats. J Neurovirol. 2008;14(3):252–60.

    Article  CAS  PubMed  Google Scholar 

  296. van der Stelt M, Di Marzo V. Cannabinoid receptors and their role in neuroprotection. Neuromolecular Med. 2005;7(1–2):37–50.

    Article  PubMed  Google Scholar 

  297. Romero J, Berrendero F, Perez-Rosado A, Manzanares J, Rojo A, Fernandez-Ruiz JJ, et al. Unilateral 6-hydroxydopamine lesions of nigrostriatal dopaminergic neurons increased CB1 receptor mRNA levels in the caudate-putamen. Life Sci. 2000;66(6):485–94.

    Article  CAS  PubMed  Google Scholar 

  298. Shen M, Piser TM, Seybold VS, Thayer SA. Cannabinoid receptor agonists inhibit glutamatergic synaptic transmission in rat hippocampal cultures. J Neurosci. 16(14):4322–34.

    Google Scholar 

  299. Shen M, Thayer SA. Cannabinoid receptor agonists protect cultured rat hippocampal neurons from excitotoxicity. Mol Pharmacol. 1998;54(3):459–62.

    CAS  PubMed  Google Scholar 

  300. Nadler V, Mechoulam R, Sokolovsky M. Blockade of 45Ca2+ influx through the N-methyl-D-aspartate receptor ion channel by the non-psychoactive cannabinoid HU-211. Brain Res. 1993;622(1–2):79–85.

    Article  CAS  PubMed  Google Scholar 

  301. Hampson AJ, Grimaldi M, Axelrod J, Wink D. Cannabidiol and (-)Delta9-tetrahydrocannabinol are neuroprotective antioxidants. Proc Natl Acad Sci U S A. 1998;95(14):8268–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Borges RS, Batista J, Jr., Viana RB, Baetas AC, Orestes E, Andrade MA, et al. Understanding the molecular aspects of tetrahydrocannabinol and cannabidiol as antioxidants. Molecules. 2013;18(10):12663–74.

    Article  CAS  PubMed  Google Scholar 

  303. Lavie G, Teichner A, Shohami E, Ovadia H, Leker RR. Long term cerebroprotective effects of dexanabinol in a model of focal cerebral ischemia. Brain Res. 2001;901(1–2):195–201.

    Article  CAS  PubMed  Google Scholar 

  304. Leker RR, Shohami E, Abramsky O, Ovadia H. Dexanabinol; a novel neuroprotective drug in experimental focal cerebral ischemia. J Neurol Sci. 1999;162(2):114–9.

    Article  CAS  PubMed  Google Scholar 

  305. Louw DF, Yang FW, Sutherland GR. The effect of delta-9-tetrahydrocannabinol on forebrain ischemia in rat. Brain Res. 2000;857(1–2):183–7.

    Article  CAS  PubMed  Google Scholar 

  306. Panikashvili D, Simeonidou C, Ben-Shabat S, Hanus L, Breuer A, Mechoulam R, et al. An endogenous cannabinoid (2-AG) is neuroprotective after brain injury. Nature. 2001;413(6855):527–31.

    Article  CAS  PubMed  Google Scholar 

  307. Sinor AD, Irvin SM, Greenberg DA. Endocannabinoids protect cerebral cortical neurons from in vitro ischemia in rats. Neurosci Lett. 2000;278(3):157–60.

    Article  CAS  PubMed  Google Scholar 

  308. van der Stelt M, Veldhuis WB, van Haaften GW, Fezza F, Bisogno T, Bar PR, et al. Exogenous anandamide protects rat brain against acute neuronal injury in vivo. J Neurosci. 2001;21(22):8765–71.

    PubMed  Google Scholar 

  309. Knoller N, Levi L, Shoshan I, Reichenthal E, Razon N, Rappaport ZH, et al. Dexanabinol (HU-211) in the treatment of severe closed head injury: a randomized, placebo-controlled, phase II clinical trial. Crit Care Med. 2002;30(3):548–54.

    Article  CAS  PubMed  Google Scholar 

  310. Bortolato M, Piomelli D. The endocannabinoid system and anxiety responses. In: Blanchard RJ BD, Griebel G, Nutt D, editors. Hand book of Anxiety and Fear. Amsterdam: Elsevier; 2008. pp. 303–25.

    Chapter  Google Scholar 

Download references

Acknowledgments

This chapter was partially supported by grants from the National Institute of Health (R21HD070611) and the Tourette Syndrome Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Bortolato .

Editor information

Editors and Affiliations

Glossary of Acronyms

2-AG

2-arachidonoylglycerol

5-HT

Serotonin

ADHD

Attention-deficit hyperactivity disorder

AMPH

d-amphetamine

ATSs

Amphetamine-type stimulants

CB1

Cannabinoid receptors type 1

CB2

Cannabinoid receptor type 2

CBD

Cannabidiol

CSF

Cerebrospinal fluid

DA

Dopamine

DARPP-32

Dopamine and cAMP-regulated phosphoprotein, 32 kDa

DAT

Dopamine transporter

DSE

Depolarization-induced suppression of excitation

FAAH

Fatty acid amide hydrolase

GABA

γ-aminobutyric acid

KO

Knockout

LTD

Long-term depression

LTP

Long-term potentiation

MAO

Monoamine oxidase

MDMA

3, 4-methylenedioxy-N-methylamphetamine

METH

Methamphetamine

NAPE

N-arachidonoyl phosphatidylethanolamine

NE

Norepinephrine

PKA

Protein kinases A

PKCΔ

Protein kinases C delta

ROSs

Reactive oxygen species

TAAR1

Trace amine associated receptor 1

THC

Δ9-tetrahydrocannabinol

TRPV1

Transient receptor potential cation channel subfamily V member 1

VMAT2

Vesicular monoamine transporter 2

VTA

Ventral tegmental area

β-PEA

β-phenylethylamine

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tambaro, S., Bortolato, M. (2015). Interactions of Cannabis and Amphetamine-Type Stimulants. In: Campolongo, P., Fattore, L. (eds) Cannabinoid Modulation of Emotion, Memory, and Motivation. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2294-9_16

Download citation

Publish with us

Policies and ethics